
IMPLEMENTING PATH COLORING

ALGORITHMS ON PLANAR GRAPHS

By

Daniel Aven Bross

A Project Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in

Computer Science

University of Alaska Fairbanks

August 2017

Approved:

Dr. Glenn Chappell, Committe Chair
Dr. Orion Lawlor, Committe Member
Dr. Chris Hartman, Committe Member
Dr. John Genetti, Department Chair

Department of Computer Science

Abstract

A path coloring of a graph partitions its vertex set into color classes such that
each class induces a disjoint union of paths. In this project we implement several
algorithms to compute path colorings of graphs embedded in the plane.

We present two algorithms to path color plane graphs with 3 colors based on a
proof by Poh in 1990. First we describe a naive algorithm that directly follows Poh’s
procedure, then we give a modified algorithm that runs in linear time.

Independent results of Hartman and Škrekovski describe a procedure that takes
a plane graph G and a list of 3 colors for each vertex, and computes a path coloring
of G such that each vertex receives a color from its list. We present a linear time
implementation based on Hartman and Škrekovski’s proofs.

A C++ implementation is provided for all three algorithms, utilizing the Boost
Graph Library. Instructions are given on how to use the implementation to construct
colorings for plane graphs represented by Boost data structures.

1

1 Plane Graphs

We will be concerned only with simple plane graphs. Informally, a plane graph is
a network drawn in the plane consisting of a set of points, and a set of line segments
between points such that no lines cross.

Formally a simple graph is an ordered pair G = (V,E) consisting of a finite set
V of vertices and a set E of two element subsets of V known as edges. We will refer
to the the vertex and edge sets of a graph G by V (G) and E(G), respectively. All
graphs in this project are simple.

As shorthand we will denote an edge {u, v} ∈ E(G) simply as uv or vu. Further-
more, if it is clear from context that v ∈ V (G) is a vertex, or uv ∈ E(G) an edge,
then we will use the notation v ∈ G or uv ∈ G.

Two vertices u, v ∈ V (G) are adjacent if uv ∈ E(G). Vertices u and v are known
as the endpoints of uv. The edge uv is said to be incident to the vertices u and v.
The vertices in G adjacent to a vertex v are known as the neighbors of v. The number
of neighbors of a vertex v is its degree, denoted deg(v).

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If S ⊆ V (G)
then the induced subgraph of S on G is the subgraph H defined by V (H) = S and
E(H) = {uv ∈ E(G) | u, v ∈ S}. We say a subgraph H of a graph G is induced if it
is the induced subgraph of its vertex set on G.

If v ∈ V (G) then we will use G− v to denote the subgraph obtained by removing
v and its incident edges from G. Similarly, if H is a subgraph of a graph G, then we
define G−H to be the subgraph obtained by removing from G all vertices in H and
all edges incident to a vertex in H.

An n-vertex path consists of the vertices v1, v2, . . . , vn and the edges v1v2, v2v3, . . . ,
vn−1vn. A length n cycle, or n-cycle, consists of an n-vertex path and the additional
edge v1vn. We will often denote a path or cycle G by simply listing its vertices in
order, i.e. G = v1v2 . . . vn.

If a path P = v1v2 . . . vn is a subgraph of a graph G then we say P is a v1vn-path
in G. A graph G is connected if for every u, v ∈ V (G) there exists a uv-path in G.
If any k − 1 vertices may be removed from a graph G with G remaining connected,
then we say G is k-connected.

A drawing of a graph maps each vertex to a point in the plane and each edge to a
curve connecting its endpoints. A planar embedding is a drawing where edge curves
intersect only at their endpoints. We say a graph is planar if it admits a planar
embedding. A planar graph together with a particular planar embedding is called a
plane graph.

Let G be a plane graph. A face of G is a maximal region of the plane not containing
any point used in the embedding. The unbounded face is known as the outer face.
We will always refer to a face by the subgraph of vertices and edges that lie on its
border.

For brevity, we have not fully formalized curves, regions, or borders. However,

2

Figure 1.1: Drawings of K3, K4, K5 (nonplanar), a 4-vertex path, and a 6-cycle.

the above definitions and results are fairly standard and may be found in many graph
theory texts, for example [27].

Theorem 1.1 (Euler’s Formula). If G is a connected plane graph with n vertices, m
edges, and f faces, then n−m + f = 2.

A simple corollary of Euler’s Formula states that if n ≥ 3, then m ≤ 3n − 6. A
plane graph is said to be triangulated if adding any new edge results in a nonplanar
graph. Triangulated plane graphs with n ≥ 3 vertices have exactly 3n− 6 edges.

A face is said to be a triangle if it is a 3-cycle. It is easy to see that all faces
in a triangulated plane graph are triangles: if any face has more than three vertices,
then we may add an edge curve connecting two face vertices without crossing existing
edges. Conversely if all faces in a plane graph are triangles, then it is triangulated.

If a plane graph has triangles for all but one face we shall say it is weakly tri-
angulated. We will always assume that the non-triangle face is the outer face. A
2-connected weakly triangulated plane graph has a cycle for its nontriangle face.

Suppose C is a cycle in a weakly triangulated plane graph G. Then the subgraph
consisting of C and all interior vertices and edges is denoted Int(C). If u, v ∈ V (C)
then we denote the uv-path in C running clockwise around the cycle with C[u, v].
Finally, if u, v ∈ V (C) we call any edge uv ∈ E(G) \ E(C) a chord of the cycle C.

A rotation scheme for a graph is a cyclic ordering of the incident edges around
each vertex. Planar embeddings naturally induce a rotation scheme by the order
in which edge curves are positioned around each vertex. In fact, with respect to
graph algorithms, the induced rotation scheme contains all the useful information of
an embedding. Therefore, while we may often visualize plane graphs with drawings,
planar embeddings will always be represented solely by their induced rotation scheme.

2 A Brief History of Coloring Plane Graphs

A k-coloring of a graph maps each vertex to one of k possible colors. Equivalently,
a k-coloring partitions the vertices of a graph into k disjoint sets called color classes. A
coloring is proper if no pair of adjacent vertices receive the same color, or equivalently
if each color class consists of pairwise nonadjacent vertices.

3

It is clear that not all planar graphs admit a proper 3-coloring: the complete graph
on four vertices is planar and requires 4 colors. Whether all planar graphs admit a
proper coloring with 4 colors, the Four Color Problem, remained one of the premier
open questions in graph theory until it was verified by Appel and Haken in 1976 [2, 3].

A (k, l)-coloring, or a k-coloring with defect l, is a k-coloring such that each vertex
shares a color with at most l neighbors. Generalizations of proper colorings were first
introduced in 1968 by Chartrand et al. in [9]. Defective colorings in particular were
introduced about simultaneously around 1985 by Cowen et al. [11], Harary et al.
[18], and Andrews et al. [1]. It was shown in [11] that all planar graphs admit a
(3, 2)-coloring.

A path k-coloring is a k-coloring such that the induced subgraph of each color
class consists of one or more disjoint paths. Note that path k-coloring is equivalent
to (k, 2)-coloring with the added restriction that path coloring forbids cycles. It was
conjectured by Broere et al. [6] that all planar graphs may be path 3-colored. In 1990
Poh [21] and Goddard [15] independently proved the conjecture. Planar graphs that
do not admit a path 2-coloring were described by Chartrand et al. [10], and thus the
result is best possible.

Poh’s proof is constructive and may easily be adapted to an algorithm for path
3-coloring plane graphs. We describe a naive version of Poh’s algorithm, as well as a
modified algorithm that runs in O(n) time.

Let G be a graph. A list assignment for G is a map L assigning each vertex
v ∈ V (G) a list of colors. Given a list assignment L, an L-list-coloring of G, first
introduced by Erdös et al. in [13], maps each v ∈ V (G) to a color in L(v). We say
a graph G is k-choosable if given any list assignment L such that

∣∣L(v)
∣∣ ≥ k for all

v ∈ V (G), G admits a proper L-list-coloring.
In 1994 Thomassen [25] proved that if G is planar, then G is 5-choosable. A planar

graph that is not 4-choosable was described by Voigt [26] in 1993, so Thomassen’s
result is best possible.

We may equivalently define the properties (k, l)-choosable and path k-choosable.
In 1997 Hartman [19] proved that all planar graphs are path 3-choosable. Hartman’s
result is best possible since path 3-coloring is a special case of path L-list-coloring
with lists of size 3. In 1999 Hull and Eaton [12] and Škrekovski [24] independently
proved that if G is a planar graph, then G is (3, 2)-choosable.

Hartman’s proof provides a constructive procedure to find a path L-list-coloring
for a plane graph that has been given a list assignment L with lists of size at least
3. Interestingly, the proofs of Hartman and Škrekovski follow the same coloring
algorithm, and thus Škrekovski unknowingly showed the stronger path 3-choosability
result. We describe an algorithm based on Hartman and Škrekovski’s work and show
it runs in O(n) time.

4

3 Graph Representations and Time Complexity

Let G be a connected plane graph. Vertices will be represented by integers, that
is, we shall assume that V (G) = {0, 1, . . . , n− 1}. We will always denote the number
of vertices in G by n and the number of edges by m.

The input size for each algorithm, given input graph G, will be the number of
vertices n. However, since G is a connected plane graph, if n ≥ 3 then m ≤ 3n − 6.
Thus O(m) = O(n). Hence it is equivalent to take the input size to be the number
of edges m.

We assume an integer RAM model of computation in which integers require fixed
space and integer operations take constant time. The basic operation for all time
complexity discussions will therefore be a single memory reference lookup, integer
arithmetic operation, or integer comparison.

We will ignore the allocation of memory with respect to time complexity, such as
in the creation of arrays or other data structures. The operations required to initialize
elements in a structure are counted. In accordance with these assumptions, inserting
or removing an element in a linked list or at the back of an array will require O(1)
time.

Vertex properties will be stored in size n arrays indexed by vertices. Thus accessing
or comparing vertex properties shall, in general, be constant time. Colors are assumed
to be integers. A coloring of G will thus be represented by an integer vertex property.

For each v ∈ V (G) we define a linked list called an adjacency list containing the
neighbors of v ordered according to the rotation scheme of the embedding. The full
plane graph G may then represented by a vertex property Adj storing the adjacency
list for each vertex. That is, each vertex v ∈ V (G) has the adjacency list Adj[v].

We will sometimes wish for the ability to quickly find a neighbor u in v’s adjacency
list directly from v’s entry in u’s list. To allow this lookup in O(1) time we will instead
define a linked list of pairs Adj[v] for each v ∈ V (G) called an augmented adjacency
list. Each node in the list Adj[v] will store a neighboring vertex u as well as a reference
to the node for v in Adj[u].

An augmented adjacency list representation of a graph G may be constructed from
a standard adjacency list representation in O(m) time via the following algorithm due
to Glenn Chappell [8].

Algorithm 3.1. (Augment Adjacency Lists)
Input: An adjacency list representation Adj of a graph G.
Output: An augmented adjacency list representation Adj′ of G with the neighbors
of each vertex listed in the same order as in Adj.
Description: We will begin by using Adj to construct an augmented adjacency list
representation Adj′ of G with the reference portion of each node uninitialized. Next
we construct an array Wrk[v] of size deg(v) for each v ∈ V (G).

We fill in Wrk as follows. For each v from 0 to n− 1 let us walk through Adj′[v].

5

At each neighbor u in Adj′[v] let rv,u be a reference to u’s position in Adj′[v] and
append the pair (v, rv,u) to Wrk[u].

After this process finishes each u ∈ V (G) will have an array Wrk[u] containing
the pairs (v, rv,u) for each neighbor v, sorted in ascending order by the vertices v.

We will now initialize the references of each node of the augmented adjacency
lists. Iterate through the vertices in descending order. Let v be the current vertex.
For each uw ∈ E(G) such that u < w and v < w we shall have initialized a reference
for u in Adj′[w] and a reference for w in Adj′[u]. We will also have removed the entry
(w, rw,u) from Wrk[u]. It remains to handle edges uv ∈ E(G) with v > u.

For each v from n − 1 to 0 let us walk through Wrk[v]. For i from 1 to deg(v)
take (u, ru,v) = Wrk[v][i]. Note that u < v by our assumptions above. Moreover,
Wrk[u] contains no entries for neighbors greater than v so (v, rv,u) is the last element
of Wrk[u]. Thus we may lookup rv,u to find u’s node in Adj′[v] and initialize the
reference with ru,v. We may similarly initialize the reference for v’s node in Adj′[u].
Finally, we remove (v, rv,u) from Wrk[u].
Time Complexity: For each edge uv ∈ E(G), u < v, we make a constant number
of assignments to Adj′ and Wrk, two reference lookups, and one entry removal from
the back of Wrk[u]. Therefore the overall complexity of the algorithm is O(m).

If G is a planar graph without a given embedding we may still construct an adja-
cency list representation of G, with neighbors simply listed in arbitrary order. There
exist numerous O(n) time algorithms to then reorder the adjacency list represen-
tation of G so that it corresponds to a valid planar embedding of G [17, 20, 5, 4].
Additionally, there exist O(n) time algorithms to add edges to the adjacency list
representation in order to connect, 2-connect, and triangulate G, while maintaining
planarity [16, 22, 14]. Thus while the algorithms presented will often assume that
input graphs are triangulated and plane embedded, arbitrary planar graphs may be
modified in linear time to fit these criteria.

Some of the algorithms we discuss, for example Poh 3-Coloring (4.1), will de-
scribe procedures on abstract graphs. Others, for example Augment Adjacency Lists
(3.1), will describe algorithms working with computer graph representations. We will
provide time complexity analysis for all algorithms working with concrete represen-
tations.

Each algorithm presented in this project will allocate some fixed number of vertex
properties, independent of the size of the graph. The size of all other data struc-
tures constructed will be O(n) at all points during the operation of each algorithm.
Therefore the space complexity of every algorithm is O(n).

4 Path Coloring and the Poh Algorithm

In this section we detail two algorithms for path 3-coloring plane graphs. We
begin by describing the general procedure proposed by Poh [21].

6

v1

vi

vl

vk

vj

vl+1

C1 C2

v1 vl

vk vl+1

u w
C1

C2

Figure 4.1: The case of a chord (left) and the case no chord exists (right).

Algorithm 4.1. (Poh 3-Coloring)
Input: A 2-connected weakly triangulated plane graph G with outer cycle C =
v1v2 . . . vk and a 2-coloring of C such that the color classes induce the paths P =
v1v2 . . . vl and Q = vkvk−1 . . . vl+1.
Output: An extension of the 2-coloring of C to a path 3-coloring of G such that no
vertex in G− C receives the same color as a neighbor of that vertex in C.
Description: If G−C is empty there are no vertices remaining to color. Otherwise
the algorithm proceeds as follows.

Case 1: Suppose there is a chord of C, that is, an edge vivj ∈ E(G) \ E(C) with
i < j. Since P and Q are induced paths it must be that vi ∈ P and vj ∈ Q. Let C1

by the cycle consisting of C[vj, vi] and the edge vivj, and C2 the cycle consisting of
C[vi, vj] and the edge vivj. Observe that C1 and C2 are each 2-colored such that each
color class induces a path. Thus we may apply the algorithm to path 3-color Int(C1)
and Int(C2). Since the subgraphs Int(C1) and Int(C2) have only the vertices of the
chord vivj in common, the combined coloring forms a path 3-coloring of G.

Case 2: Suppose no chords of C exist. Let u be the neighbor of vk immediately
clockwise from v1 and let w be the neighbor of vl immediately clockwise from vl+1.
That is, u,w ∈ Int(C) are the unique, but possibly not distinct vertices such that the
cycles uv1vk and wvlvl+1 are each faces of G.

Since G is weakly triangulated, G−C is nonempty, and C has no chords, it follows
that G−C is connected. Thus there exists a uw-path in G−C. Let T be the shortest
such path, and note that therefore T is an induced path. Color T with the remaining
color not used on P or Q.

Let C1 be the cycle consisting of P , T , and the edges v1u and vlw. Similarly,
let C2 be the cycle consisting of T , Q, and the edges vku and vl+1w. Then we may
apply the algorithm to path 3-color Int(C1) and Int(C2). Since Int(C1) and Int(C2)
have only the vertices of the path T in common, the combined coloring forms a path
3-coloring of G.

7

Given any plane graph G we may add edges until it is triangulated. Observe that
any path coloring of G with the additional edges is also a path coloring of the original
G. Therefore by path 2-coloring the outer triangle we may apply Poh’s algorithm to
path 3-color G. This observation yields the following result.

Theorem 4.1 (Poh [21] and Goddard [15]). All planar graphs are path 3-colorable.

The Poh Algorithm with Breadth First Search

In order to implement Poh’s algorithm with adjacency lists there are two main
obstacles. First, we must have a method to efficiently represent colored paths, as we
will be recursively constructing paths and dividing the graph along them. Second,
we will need an efficient algorithm to locate the chords of C and the uw-path.

Let G be a 2-connected weakly triangulated plane graph with an adjacency list
representation. Each call of the algorithm will be provided with a cycle C in G and
produce a path 3-coloring of Int(C) according to the specifications of Poh’s algorithm.

To represent induced paths in G we will simply use the color vertex property.
Suppose P = v1v2 . . . vk is an induced path in G, and each vertex of P has been
assigned cP . Assume that the coloring constructed so far is a path coloring. If vi ∈ P
then a neighbor u of vi will have the color cP if and only if u ∈ P , that is, u = vi−1
or u = vi+1. Therefore we may represent the entire path by storing just the vertices
v1 and vk.

We will now describe the first version of Poh’s algorithm on adjacency list graphs,
using a breadth first search to find induced paths and chords.

Algorithm 4.2. (Poh – BFS)
Assumptions: Suppose P = v1v2 . . . vl and Q = vkvk−1 . . . vl+1 are induced paths
such that C = v1v2 . . . vk is a cycle. Additionally, assume that each path has been
colored with a distinct color.
Input: The paths P and Q, each represented by their endpoints as described above.
Output: An extension of the 2-coloring of C to a path 3-coloring of Int(C) such that
no vertex in Int(C)− C receives a the same color as a neighbor of that vertex in C.
Description: Locate the position of vk in Adj[v1]. Proceeding one vertex further in
Adj[v1] gives us a vertex u such that the cycle uv1vk is a triangle.

Case 1: Suppose u ∈ C. If u is in P , i.e. u = v2, we apply the algorithm to the
paths P − u and Q. Similarly if w is in Q we apply the algorithm to P and Q − u.
In either case, if the two remaining paths each consist of single vertex then there are
no remaining uncolored vertices and we terminate the algorithm.

Case 2: Suppose u 6∈ C. Perform a breadth first search from u in Int(C) − C,
that is, ignoring vertices in C. Terminate the search when we reach a vertex w with
neighbors vi ∈ P and vj ∈ Q such that vi is immediately past vj in Adj[w]. Such a
vertex must exist by the same argument as in Poh 3-Coloring (4.1). Backtracking

8

vlv1

vl+1
vk

wu

vi

vj

C1

C2

C3

vl

vl+1

vi

vj

vi
v1

wu

C1

C2

C3

vj

vk

wu

Figure 4.2: Dividing G along the edge vivj and the uw-path.

1

1

2 3 k

2

3

k

Figure 4.3: The collection of graphs {Gk}k∈N on which Poh performs poorly.

from w along the breadth first search and coloring vertices produces an induced uw-
path T , colored with the remaining color not used on P or Q.

Define the paths P1 = v1v2 . . . vi, P2 = vipi+1 . . . vl, Q1 = vkvk−1 . . . vj, and Q2 =
vjqj−1 . . . vl+1. Observe that we have a cycle C1 consisting of P1, T , and the edges
v1u and viw. Similarly we have a cycle C2 consisting of T , Q1, and the edges vku and
vjw. We apply the algorithm to P1 and T to color Int(C1) and similarly to T and Q1

to color Int(C2).
If i = l and j = l + 1 we are done. Otherwise, we have the cycle C3 consisting

of P2, Q2 and the edges vivj and vlvl+1, and we may apply the algorithm to color
Int(C3).

Note that the combined coloring forms a path 3-coloring of Int(C) by the same
argument as in Poh 3-Coloring (4.1).
Complexity: In the first step we rotate through Adj[v1] to find vk and get an

9

orientation within the graph. This orientation must be performed at most once for
each vertex, for a total of at most

∑n−1
v=0 deg(v) = 2m operations.

In the next step we perform a breadth first search from the vertex u. A breadth
first search requires at most 2m lookups. Moreover, the vertex will u will be colored
following the search. Thus we perform at most one breadth first search from each
vertex, requiring at most 2nm operations. Therefore the complexity of the algorithm
is O(2m + 2nm) = O(n2).

We define the collection of graphs {Gk}k∈N, depicted in Figure 4.3. Let us fix
k ∈ N and note that Gk has n = k2+k

2
+ 3 vertices.

Suppose we apply Poh BFS (4.2) to path 3-color Gk. Let the initial 2-coloring of
the outer triangle of Gk assign the top vertex a color distinct from the bottom two.
The (k− i+1)th recursive call will perform a breadth first search visiting each vertex
in a subgraph of size i2+i

2
, hence requiring Θ(i

2+i
2

) operations. The total number of
operations required to path 3-color Gk is therefore

Θ

(
k∑

i=1

i2 + i

2

)
= Θ(n3/2).

Thus the time complexity of the algorithm is Ω(n3/2). In particular the algorithm is
not linear.

The Poh Algorithm in Linear Time

Poh’s proof requests that we find the shortest uv-path in Int(C). Therefore Poh’s
algorithm as written does not appear to admit a linear time algorithm.

However, the correctness of Poh’s algorithm does not require that T be the short-
est uw-path, only that T be an induced uw-path. We will show that Poh’s algorithm
becomes linear if we instead construct an induced uw-path consisting of vertices in
G− C with at least one neighbor in the colored path P .

Algorithm 4.3. (Poh – Path Walk)
Assumptions: Assume that P = v1v2 . . . vl and Q = vkvk−1 . . . vl+1 are induced
paths, each colored with a distinct color, such that C = v1v2 . . . vk is a cycle.
Input: The path P , represented by its endpoints, and the color of the path Q.
Output: An extension of the 2-coloring of C to a path 3-coloring of Int(C) such that
no vertex in Int(C)− C receives a the same color as a neighbor of that vertex in C.
Description: We will iterate through the vertices of P until we find a chord. All
interior vertices visited will be marked to indicate they have a neighbor in P . For
each i from 1 to l let us walk through Adj[vi] from vi−1 to vi+1, not including vi−1
and vi+1.

Let v be the current neighbor. If v = vj ∈ Q then vivj is a chord of C and we
stop. Otherwise v ∈ Int(C)− C with the neighbor vi ∈ P and we mark it.

10

Define the cycles C1 and C2 as usual by dividing C along the chord vivj. Note
that C1 is chordless as P and Q are induced paths and vivj is the first chord of C
encountered. Apply Path Walk (4.3) to path 3-color Int(C2). It remains to color
Int(C1).

If we never encountered a vertex in Int(C) − C during our walk through the
neighbors of v1, . . . , vi, then Int(C1)−C1 is empty and thus Int(C1) is already colored.
Otherwise let u be the first such neighbor encountered. Note that u is the unique
vertex such that uv1vl is a face. We may therefore apply Path Trace (4.4) to path
3-color Int(C1).

The combined coloring is a path 3-coloring of Int(C) by the same argument as in
Poh 3-Coloring (4.1).
Complexity: See Path Trace (4.4).

Algorithm 4.4. (Poh – Path Trace)
Assumptions: Let P = v1v2 . . . vl and Q = vkvk−1 . . . vl+1 be induced paths, each
colored with a distinct color, such that C = v1v2 . . . vk is a chordless cycle. In addition,
suppose Int(C) − C is nonempty and all vertices in Int(C) − C with at least one
neighbor in P have been marked.
Input: The vertex u ∈ Int(C)− C such that the cycle uv1vk is a face, as well as the
respective colors of the paths P and Q.
Output: An extension of the 2-coloring of C to a path 3-coloring of Int(C) such that
no vertex in C receives the same color as a neighbor of that vertex in Int(C)− C.
Description: Initialize T as the path consisting of the single vertex u, coloring u
with the remaining color. We will recursively add vertices to T until we reach the
unique vertex w such that wvlvl+1 is a face.

Suppose we have constructed the induced path T = t1t2 . . . td, such that t1 = u
and each ti has at least one neighbor in P . Iterate through Adj[td], starting from
td−1. Let v be the current neighbor. If v has a neighbor in P we color v, assign
T = t1 . . . tdv, and repeat the process with v as the new end vertex. If v ∈ P it must
be that td = w and we are finished constructing T . Otherwise ignore v and move to
the next neighbor.

Note that the process above must terminate since each vertex in T has at least
one neighbor in P .

Let T = t1t2 . . . td be the path constructed above. Suppose titj is an edge with
ti, tj ∈ T , i < j. If i = 1 let us define the vertex t0 to be v1. Since each vertex
in T has a neighbor in P , by planarity it must be that tj is between ti−1 and ti+1

counterclockwise in Adj[ti]. But by the construction of T , ti+1 is the first neighbor of
ti counterclockwise from ti−1. Thus j = i + 1.

Therefore the only edges between vertices in T are the edges t1t2, . . . , td−1td. So
T is an induced path.

We apply Path Walk (4.3) to path 3-color Int(C2). It remains to color any uncol-
ored vertices in Int(C1).

11

vlv1

vl+1
vk

tdt1

vi vj

tp tp+1

y
vlv1

vl+1
vk

tdt1

vi vj

tp

y

Figure 4.4: Coloring vertices above T in Path Trace (4.4) case 1 (left), case 2 (right).

All vertices in T have at least one neighbor in P . Therefore any uncolored vertex
in Int(C1) must lie in a path 2-colored chordless cycle of the form vivi+1 . . . vjtp+1tp
or vivi+1 . . . vjtp. We will use the following procedure to locate all such cycles that
contain uncolored vertices and color them using Path Trace (4.4).

For each p from 1 to d let us iterate through Adj[tp], starting with tp+1. In the
case p = d we will define tp+1 = vl. Suppose we visit a neighbor y ∈ Int(C1) − C1

followed counterclockwise by a neighbor vi ∈ P . There are two possible cases.
Case 1: Suppose none of the neighbors of tp between tp+1 and vi counterclockwise

are in P . Let j be the smallest integer such that tp+1vj is an edge, noting that i < j
by planarity. Note that since P is an induced path the cycle Cy = tpvivi+1 . . . vjtp+1

is chordless by the our selection of vj. Thus we may apply Path Trace (4.4) to color
Int(Cy) with the vertex y forming the face ytpvi.

Case 2: Suppose we have previously visited a neighbor of tp in P , and let vj ∈ P
be the most recent such neighbor visited. Note that by planarity it must be that
i < j. Thus the cycle Cy = vivi+1 . . . vjtp is chordless since P is an induced path. We
may therefore apply Path Trace (4.4) to color Int(Cy) with the vertex y forming the
face ytpvi.
Complexity: Let G be a plane graph that has been colored with Poh. Let P be a
path induced by the path 3-coloring of G. Note that each vertex is in exactly one
such path.

Let v ∈ P . We iterated through Adj[v] exactly once during Path Walk (4.3).
We iterated through Adj[v] at most twice during Path Trace (4.4): once to locate
the starting neighbor, and once to find the next vertex to add to the path and find
uncolored vertices above T .

Thus the time complexity of the algorithm is

O

(
n−1∑
v=0

3 · deg(v)

)
= O(6m) = O(n).

More specifically, it is Θ(n).

12

5 Path List-Coloring and the Hartman-Škrekovski

Algorithm

In this section we describe an algorithm for path list-coloring plane graphs with
lists of size 3. The following algorithm on abstract graphs is due to the independent
work of Hartman [19] and Škrekovski [24].

Note that the description of the algorithm given below is structured differently
from the descriptions given by both Hartman and Škrekovski. This restructuring is,
in many ways, less elegant than both original proofs, but helps illuminate how the
algorithm will operate on a graph with an adjacency list representation.

Algorithm 5.1. (Hartman-Škrekovski – Path Color)
Input: Let G be a 2-connected weakly triangulated plane graph with outer cycle
C = v1v2 . . . vk. Let x = v1 and y ∈ C − x. Suppose L is a list assignment for G such
that for each vertex v ∈ G ∣∣L(v)

∣∣ ≥ 1 if v = x or v = y;∣∣L(v)
∣∣ ≥ 2 if v ∈ C − x− y;∣∣L(v)
∣∣ ≥ 3 otherwise.

We will call x and y the fixed vertices. Assume that all vertices are uncolored except
for potentially x and y. If x or y are colored, assume that L(x), L(y) contain only
the color they have been assigned.
Output: A path L-list-coloring of G such that the fixed vertices x and y each share
a color with at most one of their neighbors.
Description: If x is already colored let c be the color of x. Otherwise select arbitrary
c ∈ L(x). We will construct an induced path P , colored with c, and consisting of
vertices from C. The path will begin at x and proceed clockwise along the outer face
a far as possible towards y. Initialize P to consist of the single vertex x.

Suppose we have constructed an induced path P = vj1vj2 . . . vjl with 1 = j1 <
j2 < . . . < jl < k. Let us select the largest integer i such that vi ∈ C[vjl , y] and
c ∈ L(vi). If no such i exists we have finished constructing P . Otherwise we append
vi to P and repeat.

Let L′ be a list assignment for G defined such that for v ∈ G

L′(v) =

{
{c}, if v ∈ P ;

L(v), otherwise.

Let P = vj1vj2 . . . vjl be the path constructed above. For each vertex in vji ∈ P , color
vi with c.

Suppose i ∈ {1, . . . , l − 1} such that ji + 1 < ji+1. We apply Remove Path (5.2)
to path L′-list-color the subgraph bounded by the cycle consisting of C[vji , vji+1

] and
the edge vjivji+1

, with colored path vji+1
vji , and fixed vertices v(ji)+1 and v(ji+1)−1.

13

x

vji

v(ji)+1
v(ji+1)−1

vji+1

y

Figure 5.1: The case the path P uses a chord of C.

If y ∈ P let us define y′ = vjl+1, otherwise y′ = y. We may apply Remove Path
(5.2) to path L′-list-color the subgraph bounded by the cycle consisting of P and
C[vjl , vj1], with colored path P , and fixed vertices vk and y′.

Pairwise all subgraphs above have only vertices in the path P in common. By
Remove Path (5.2), no vertex with a neighbor in P will receive the color c. Therefore
the combined coloring is a path L-list-coloring of G such that x, y each share a color
with at most one of their neighbors.

Algorithm 5.2. (Hartman-Škrekovski – Remove Path)
Input: Let G be a 2-connected weakly triangulated plane graph with outer cycle
C = v1v2 . . . vk. Let P = v1v2 . . . vl be an induced path in C. Let x = vk and
y ∈ C − P . Let L be a list assignment for G such that for v ∈ G

L(v) = {c} if v ∈ P ;∣∣L(v)
∣∣ ≥ 1 if v = x or v = y;∣∣L(v)
∣∣ ≥ 2 if v ∈ C − P − x− y;∣∣L(v)
∣∣ ≥ 3 otherwise.

Assume that if
∣∣L(x)

∣∣ = 1 then c 6∈ L(x). Additionally, assume that for every
v ∈ C[vl+1, y], if v has a neighbor in P then c 6∈ L(v).

We will once again refer to x and y as fixed vertices, although in this algorithm
it may be the case that x = y. Assume that all vertices are uncolored except for
potentially x and y. If x or y are colored assume that L(x), L(y) contain only the
color they have been assigned.
Output: A path L-list-coloring of G such that x and y each share a color with at
most one their neighbors, and no vertex in G− P with a neighbor in P receives the
color c. If x = y then x will not share a color with any of its neighbors in G.
Description: Note that G is 2-connected and weakly triangulated. Thus to discon-
nect G by removing vertices from C we would need to remove vertices vi, vj ∈ C such

14

v1

vi

vl

vj

y

C1 C2

v1

vi

vl

y

vj

C1 C2

Figure 5.2: Hartman-Škrekovski case 1.1 (left) and case 1.2 (right).

that vivj is a chord of C. Observe that P is a subgraph of C and an induced path in
G, so no vertices in P induce a chord of C. So G− P is connected.

Case 1: Suppose there is a chord of C with an endpoint in P . Let us select the
smallest i ∈ {1, . . . , l} and largest j ∈ {l + 2, . . . , k − 1} such that vi ∈ P and vivj is
a chord of C. Let C1 be the cycle consisting of C[vj, vi] and the edge vivj. Similarly,
let C2 be the cycle consisting of C[vi, vj] and the edge vivj. Let P1 = v1v2 . . . vi and
P2 = vivi+1 . . . vl.

Case 1.1: Suppose y ∈ C[vl+2, x] and vj ∈ C[vl+2, y]. Then x, y ∈ C1. We will
first apply Remove Path (5.2) to path L-list-color Int(C1) with the colored path P1,
and fixed vertices x and y. We then apply Remove Path (5.2) to path L-list-color
Int(C2) with colored path P2, and the single fixed vertex vj.

The subgraphs Int(C1) and Int(C2) have only the chord vivj in common. The
vertex vi is an endpoint of the colored path in both Int(C1) and Int(C2). Thus vi will
share a color with at most one neighbor in each of Int(C1) and Int(C2). Since vj is
the single fixed vertex in Int(C2), vj will not share a color with any of its neighbors in
Int(C2). Thus the combined coloring is a path L-list-coloring of G with x, y sharing
a color with the correct number neighbors.

Case 1.2: Otherwise vj ∈ C[y, vk−1], vj 6= y. Again, we first apply Remove Path
(5.2) to path L-list-color Int(C1) with the colored path P1, and fixed vertices x and
vj. We may then apply Remove Path (5.2) to path L-list-color Int(C2) with colored
path P2, and fixed vertices vj and y.

Again Int(C1) and Int(C2) have only the chord vivj in common. In both Int(C1)
and Int(C2) the vertex vj is fixed vertex, and vi is an endpoint of the colored path.
Therefore vi will share a color with at most one of its neighbors in each subgraph,
and similarly for vj. Thus the combined coloring is a path L-list-coloring of G with
x, y sharing a color with the correct number neighbors.

Case 2: Suppose there are no chords of C with endpoints in P . Let L′ be a list

15

assignment for G− P defined by

L′(v) =

{
L(v) \ {c}, if v has at least one neighbor in P ;

L(v), otherwise.

Case 2.1: Suppose G− P is 2-connected. Let v ∈ G− P .
Suppose v is not on the outer face of G − P . Then v has no neighbors in P and

|L′(v)| =
∣∣L(v)

∣∣ ≥ 3.
Suppose v is on the outer face of G−P , v 6∈ C. Then v has at least one neighbor

in P and |L′(v)| ≥
∣∣L(v)

∣∣− 1 ≥ 2.
Finally, suppose v ∈ C. Since there are no chords of C with endpoints in P the

only vertices in C −P with neighbors in P are x and vl+1. Recall we assumed that if
v ∈ C[vl+1, y] and v has at least one neighbor in P then c 6∈ L(v). Thus if v 6= x and
v 6= y, then |L′(v)| =

∣∣L(v)
∣∣ ≥ 2. We ensured c 6∈ L(x) if

∣∣L(x)
∣∣ = 1. Thus if v = x

or v = y, |L′(v)| ≥ 1.
Therefore L′ meets the requirements of Path Color (5.1) with fixed vertices x and

y. Moreover, by the definition of L′, in a path L′-list-coloring of G − P no vertex
with a neighbor in P will receive the color c.

Case 2.1.1: Suppose x 6= y. Then we may apply Path Color (5.1) to path L′-list-
color G− P with fixed vertices x and y, the new path starting at x.

Case 2.1.2: Suppose x = y. If x is uncolored select arbitrary cx ∈ L′(x), color
x with cx, and define L′(x) = {cx}. Apply Remove Path (5.2) to path L′-list-color
G−P with the colored path consisting of the single vertex x, and the vertices adjacent
to x on the outer cycle of G − P as fixed vertices. This ensures x receives no same
colored neighbors in G.

Case 2.2: Finally, if G − P is not 2-connected, then G − P must be a complete
graph on one or two vertices. It is simple to check we may L′-list-color G − P such
that the requirements hold.

Let G be a plane graph and L a list assignment such that
∣∣L(v)

∣∣ ≥ 3 for all v ∈ G.
We may add edges to G until it is triangulated. Then we may apply Path Color
(5.1), with arbitrary fixed vertices, to construct a path L-list-coloring. This yields
the following result.

Theorem 5.1 (Hartman [19]). All planar graphs are path 3-choosable.

The Hartman-Škrekovski Algorithm with Adjacency Lists

In order to implement Hartman and Škrekovski’s algorithm with adjacency lists
there are two main challenges. First, we must be able to remove paths and locate
the subgraphs for recursive calls. Second, we must be able to track the location of
vertices on the outer face with respect to the fixed vertices x, and y. For example:

16

when adding a vertex to the path P = vj1vj2 . . . vjl in Path Color (5.1), we need to
know which neighbors of vjl lie in C[vjl , y].

For now, let us assume that we have solved the second challenge described above.
That is, given vertices u, v, w ∈ C, assume that we can determine whether v ∈ C[u,w]
in O(1) time.

Let G be a 2-connected weakly triangulated plane graph with an augmented adja-
cency list representation. Just as in Poh’s algorithm, each call will be provided with
a cycle C = v1v2 . . . vk in G. The job of a particular recursive call is then to color
the subgraph Int(C) such that the requirements of the Hartman-Škrekovski algorithm
hold.

We will provide each vertex in G with a boolean vertex property to represent its
state. All vertices in C will be have a state indicating they are on the outer face, and
likewise vertices in Int(C)− C will have a state indicating they are not in C.

The list assignment L will be represented by vertex property storing a linked list
of colors L[v] for each v ∈ G. We will denote the number of colors in the linked list
by
∣∣L[v]

∣∣. We will produce a coloring of G by reducing the size of each color list to
one. Thus we consider a vertex v colored if

∣∣L[v]
∣∣ = 1.

For each vertex vi ∈ C we will store a vertex property Nbr[vi] called a neighbor
range. The neighbor range of vi will contain a pair of references to nodes in Adj[vi],
that is, Nbr[vi] = (r1, r2). The first reference r1 will point to the node for vi−1 in
Adj[vi] and the reference r2 will point to the node for vi+1.

Neighbor ranges provide immediate access to the preceding and subsequent ver-
tices of vi in C. Additionally, they give start and stop nodes in Adj[vi] for the list of
neighbors of vi that are contained in the subgraph Int(C).

Algorithm 5.3. (Hartman-Škrekovski – Path Color)
Assumptions: Suppose C = v1v2 . . . vk is a cycle, x = v1, and y ∈ C − x. Assume
that for each v ∈ Int(C), ∣∣L[v]

∣∣ ≥ 1 if v = x or v = y;∣∣L[v]
∣∣ ≥ 2 if v ∈ C − x− y;∣∣L[v]
∣∣ ≥ 3 otherwise.

Assume that the vertices of Int(C) have been marked according to whether they are
in C or Int(C)−C. Finally, assume that for each vi ∈ C we have constructed Nbr[vi]
as described above.
Input: The fixed vertices x and y.
Output: A path L-list-coloring of Int(C) such that x and y each share a color with
at most one of their neighbors.
Description: If x is colored let c be the color of x. Otherwise let c be the first color
in L[x] and assign L[x] = {c}.

Initialize P to contain the single vertex x. We will now append vertices to P
following the procedure of Path Color (5.1).

17

Suppose we have constructed an induced path P = vj1vj2 . . . vjl with 1 = j1 < j2 <
. . . < jl < k. Let v = vjl be the last vertex added to P . Let us iterate through Adj[v]
counterclockwise from vjl−1

, if l = 1 start from vk. Let u be the current neighbor.
Case 1: If u 6∈ C[v, y] or c 6∈ L(u) then we ignore u and continue to the next

vertex in Adj[v].
Case 2: Suppose u = vi ∈ C, u ∈ C[v, y], and c ∈ L(u), that is, suppose we may

add u to P . There are two cases to consider.
Case 2.1: Suppose the start node of Nbr[u] is not v. Then u 6= vjl+1. Let

(r1, r2) = Nbr[u] and (s1, s2) = Nbr[vjl]. Let rv be a reference to the node for v in
Adj[u] and su be a reference to the node for u in Adj[v]. Note that the reference rv
may be located in O(1) time from the node for u in Adj[v] since we have an augmented
adjacency list representation of G.

Let us assign Nbr[u] = (r1, rv) and Nbr[v] = (su, s2). We will then call Remove
Path (5.4) on the cycle consisting of C[v, u] and the edge uv, with colored path uv,
and fixed vertices vi−1 and vjl+1.

We then assign Nbr[u] = (rv, r2) and Nbr[v] = (s1, su). Finally, color u with c,
assign L[u] = {c}, append u to P , and attempt to continue the path from u.

Case 2.2: Suppose the start node of Nbr[u] is v. Then we may color u with c,
assign L[u] = {c}, append u to P , and attempt to continue the path from u.

Let P = vj1vj2 . . . vjl be the path constructed above. If y ∈ P let us define
y′ = vjl+1, otherwise y′ = y. We may finally apply Remove Path (5.4) to the cycle
formed by P and C[vjl , vj1], with colored path P , and fixed vertices vk and y′.
Complexity: See Remove Path (5.4).

Algorithm 5.4. (Hartman-Škrekovski – Remove Path)
Assumptions: Suppose C = v1v2 . . . vk is a cycle. Let P = v1v2 . . . vl be an induced
path in C colored with some color c. Let y ∈ C − P and x ∈ C[y, vk]. Assume that
for each v ∈ Int(C),

L[v] = {c} if v ∈ P ;∣∣L[v]
∣∣ ≥ 1 if v = x or v = y;∣∣L[v]
∣∣ ≥ 2 if v ∈ C − P − x− y;∣∣L[v]
∣∣ ≥ 3 otherwise.

Assume that for every v ∈ C[x, vk], c is not in L[v]. Assume that for every v ∈
C[vl+1, y], if v has a neighbor in P then c is not in L[v]. Finally, assume that for each
vi ∈ C we have constructed Nbr[vi] as described above.
Input: The vertices v1, x, and y.
Output: A path L-list-coloring of Int(C) such that x and y each share a color with
at most one of their neighbors, and no vertex in Int(C) − P with a neighbor in P
receives the color c. If x = y then no neighbor of x in Int(C) will receive the same
color as x.

18

vk

v1

y

x

u

C1

C2

vk

v1

x

y

u

C1

C2

vk

v1

x

y
u

C1

C2

Figure 5.3: From left to right: case 2.2.1, case 2.2.2, and case 2.2.3.

Description: We will remove the path P one vertex at a time. In this call we will
be “removing” edges v1u around v1, by updating Nbr[u] to exclude the edge. Note if
u 6∈ C we must first construct Nbr[u]. We will completely remove v1 from Int(C) if
there are no chords v1vi of C.

Let us iterate counterclockwise through Adj[v1] beginning from vk. Let u be the
current neighbor of v1.

Case 1: Suppose u 6∈ C. Look through L[u] and remove the color c if it exists.
After removing v1, u will be on the outer face. Thus we set the state of u to indicate
it is on the outer face. Construct Nbr[u] = (r1, r2) such that r1 is a reference to the
node immediately prior to v1 in Adj[u] and r2 is a reference to the node immediately
subsequent to v1.

Case 2: Suppose u ∈ C. There are several cases to consider.
Case 2.1: Suppose u = vk. Let (r1, r2) = Nbr[u]. By our assumptions r2 is a

reference to the node for v1 in Adj[u]. Reassign r2 to be a reference to the node
immediately prior to v1 in Adj[u]. This removes v1 from the set of neighbors of u
contained in the cycle.

Case 2.2: Suppose u 6= vk. In this case the edge v1u is either a chord of C or
u = v2. Let N be the vku-path consisting of the neighbors of v1. Let C1 be the cycle
consisting of N and C[u, vk]. If u 6= v2 let C2 be the cycle consisting of C[v1, u] and
the edge v1u.

Let (r1, r2) = Nbr[u] and (s1, s2) = Nbr[v]. Let rv be a reference to the node for
v in Adj[u] and su be a reference to the node for u in Adj[v].

In all cases below, before we apply an algorithm to color Int(C1) we will assign
Nbr[u] = (rv, r2) and Nbr[v] = (s1, sv). Similarly, before applying an algorithm to
color Int(C2) we will assign Nbr[u] = (r1, rv) and Nbr[v] = (su, s2).

We will now path L-list-color Int(C1) and, if u 6= v2, Int(C2). There are several
cases to consider.

Case 2.2.1: Suppose u ∈ C[x, v1]. Note that in this case it must be that u 6= v2.
We will first apply Remove Path (5.4) to path L-list-color Int(C2) with fixed vertices

19

x and y. Note that this colors the vertex u. We will apply Remove Path (5.4) with
colored path consisting of just the vertex u, and the vertices immediately adjacent to
u on C1 as the fixed vertices. This ensures no neighbor of u in Int(C1) receives the
same color as u.

Case 2.2.2: Suppose u ∈ C[y, x], u 6= y. Again it must be that u 6= v2. We apply
Color Path (5.3) to path L-list-color Int(C1) with fixed vertices x and u, the new
path starting at x. Next we apply Remove Path (5.4) to Int(C2) with fixed vertices
u and y.

Case 2.2.3: Suppose u ∈ C[v1, y], u 6= v2. We apply Color Path (5.3) to path
L-list-color Int(C1) with fixed vertices x and y, the new path starting at x. We then
apply Remove Path (5.4) to path L-list-color Int(C2) with the single fixed vertex u.
This ensures no neighbor of u in Int(C2) receives the same color as u.

Case 2.2.4: Suppose u = v2. If c is in L[u] then u is a path vertex and we apply
Remove Path (5.4) to path L-list-color Int(C1) with fixed vertices x and y. Otherwise,
we have reached the end of the path. We apply Color Path (5.3) to Int(C1) with fixed
vertices x and y, the new path starting from x.
Complexity: Let v ∈ G. We iterate through Adj[v] at most once during Color Path
(5.3) when looking for the next vertex to add to the path containing v. In Remove
Path (5.4) we iterate through Adj[v] exactly once. We also iterate through Adj[v]
once when we initially construct Nbr[v] to locate start and stop nodes. Therefore the
overall complexity of the algorithm is

O

(
n−1∑
v=0

3 · deg(v)

)
= O(6m) = O(n).

More specifically, it is Θ(n).

Tracking Vertices on the Outer Cycle

The Hartman-Škrekovski algorithm described in the previous section relied on the
assumption that we could immediately know the relative location of vertices on the
outer cycle. In Path Color (5.3) we assumed that we could determine whether a
given vertex u ∈ C was in the path C[v, y], where v was the last vertex added to
our colored path. Additionally, in Remove Path (5.4) we assumed that for u ∈ C we
could determine whether u was in C[x, vl], C[y, x], or C[v1, y]. We will now describe
how this check may be accomplished in O(1) time.

Let us define an integer vertex property to store a location mark for each vertex
on the outer cycle. Assume that we are given the input for Remove Path (5.4). Also,
assume that vertices in C[x, v1] have been assigned the mark n1, vertices in C[v1, y]
have the mark n2, and vertices in C[y, x] have the mark n3.

Let us iterate through Adj[v1] starting from vk as in (5.4). Let u be the current
neighbor. If u 6∈ C we will assign u the mark n1. This is because u will be in C1[x, v2]
if there are no chords v1vi.

20

Now suppose we reach the end of the colored path, or we hit a chord v1u with
u ∈ C[v1, x]. Then in the subsequent call to Color Path (5.3) on Int(C1) we will
need to treat vertices marked n1 and n2 as the same segment, since C1[x, y] consists
of both C1[x, vk] and C1[u, y]. One solution is to walk along C1 and remark vertices,
but this is very inefficient. Another solution is to simply compare with both marks
to check whether a vertex is in C1[x, y]. However, we will be drawing further colored
paths and generating further marks, hence the collection of marks to compare may
grow very large.

Our solution is to use a disjoint set structure to compare location marks. All
marks begin as singleton sets. To join the segments marked with n1 and n2 above we
may simply perform a union operation in the disjoint set structure.

The mark n1 for the segment C1[x, vk] will always be a singleton set in the disjoint
set structure. This is because the only vertices marked with n1 are vertices that have
been added to the outer face while removing vertices from the colored path. Thus
in each union operation performed at least one of the two sets is always a singleton.
Because of this, standard disjoint set optimizations allow set lookups in constant time.
Therefore performing O(n) make set, union, and lookup operations in the disjoint set
structure requires O(n) time. Hence the overall performance of the algorithm remains
linear.

For full details on managing location marks and disjoint set operations, see the
provided C++ implementation [7].

6 Path 3-Coloring and Path List-Coloring in C++

In this section we detail the C++ implementation of each algorithm above. In-
structions for using each algorithm are provided, as well as brief examples.

The Boost Graph Library (BGL) [23] details a generic interface for working with
graphs, as well as numerous data structures and algorithms. We will begin with
a brief introduction to the BGL. Then we will discuss implementing the Poh and
Hartman-Škrekovski algorithms using BGL abstractions.

We will assume familiarity with the C++ language and the C++ Standard Tem-
plate Library (STL). Full hyperlinked documentation is available, with links to the
relevant Boost and STL concepts [7].

The Boost Graph Library

The BGL provides several abstract concepts for graph data structures. The basic
Graph concept requires that vertex and edge types are defined, as well as a few other
properties such as whether the graph is directed or undirected. The VertexListGraph
and EdgeListGraph refine this concept to additionally require an interface to iterate
over the vertex and edge sets, respectively. The VertexAndEdgeListGraph concept
simply combines the two refinements.

21

Although other concepts exist such as AdjacencyGraph, we will only require that
input graphs model VertexListGraph or VertexAndEdgeListGraph. The Adjacency
Graph concept might seem like an obvious choice, but we follow the BGL’s decision
and represent the rotation scheme for planar embeddings as an exterior property map.
Thus the graph data structure itself remains fairly simple.

There are two different types of vertex and edge properties in the BGL: interior
properties and exterior properties. Interior properties are properties that are are
stored within the graph data structure. They are accessed or assigned via get or
put functions, respectively, on the graph structure itself. Exterior properties are
properties stored in a separate data structure. Calls to get and/or put on the property
map structure then allow reads and/or writes to individual vertex or edge properties.

All our properties will be stored in exterior property maps that satisfy the Lvalue
PropertyMap concept. The LvaluePropertyMap concept requires that get calls on
the property map return values by reference. The BGL defines the PlanarEmbedding

concept to refine LvaluePropertyMap to require that each vertex is assigned a range
of edges, representing the embedding ordered rotation scheme.

The BGL provides the concrete boost::adjacency list graph data structure
that models VertexAndEdgeListGraph, among other concepts. We provide wrapper
functions that will construct fast property maps (boost::iterator property map)
for the property maps that are used only as working space for the algorithms. In the
examples here we will only discuss boost::adjacency list structures, but functions
are available in the library to allow the algorithms to work on arbitrary data structures
modeling the necessary BGL concepts.

Code to construct a simple triangulated planar graph may be seen in Figure 6.1.
A planar embedding for the graph is constructed in Figure 6.3. This graph and
embedding will be used as an example input in the later sections.

We will use graph t to refer to some definition of boost::adjacency list. We
will use vertex t and edge t to refer to the vertex and edge types of graph t (see
the type definitions in Figure 6.1 for an example).

Poh’s Algorithm

Here we describe our implementation of the linear time Poh algorithm described
in (4.3) and (4.4). The function prototype and template requirements are shown in
Figure 6.4 and Figure 6.5, respectively.

We assume that the provided graph is simple and weakly triangulated and the
given planar embedding structure represents a valid planar embedding of the graph.
We assume that the two ranges of vertices map are paths in the graph satisfying the
requirements of Poh – Path Walk (4.3). Finally, we assume that no vertex is already
colored any of c 0, c 1, or c 2.

When the algorithm is complete color map will be assigned such that it represents
a valid path 3-coloring of the subgraph bounded by the cycle formed by the two

22

// Define the graph , edge , and v e r t e x t y p e s
typedef a d j a c e n c y l i s t <

vecS ,
vecS ,
undirectedS ,
property<ve r t ex index t , s i z e t >,
property<edge index t , s i z e t >

> graph t ;
typedef typename g r a p h t r a i t s<graph t>

: : v e r t e x d e s c r i p t o r v e r t e x t ;
typedef typename g r a p h t r a i t s<graph t>

: : e d g e d e s c r i p t o r edge t ;

// Construct a s imple p lanar graph on 5 v e r t i c e s
graph t graph (5) ;
add edge (0 , 1 , graph) ;
add edge (1 , 2 , graph) ;
add edge (2 , 0 , graph) ;
add edge (1 , 3 , graph) ;
add edge (0 , 3 , graph) ;
add edge (2 , 3 , graph) ;
add edge (0 , 4 , graph) ;
add edge (2 , 4 , graph) ;
add edge (3 , 4 , graph) ;

Figure 6.1: Example code to construct a graph in the BGL.

0

1 2

3 4

Figure 6.2: A drawing of the graph constructed in Figure 6.1.

23

// A v e c t o r to s t o r e embedding ordered i n c i d e n c e l i s t s
vector<vector<edge t>> planar embedding storage (

num vert i ces (graph)
) ;

// Map each v e r t e x to i t s i n c i d e n c e l i s t
i t e ra to r proper ty map<

typename vector<vector<edge t >>:: i t e r a t o r ,
property map<graph t , v e r t ex index t > : : c ons t type

> planar embedding (
p lanar embedding storage . begin () ,
get (ver tex index , graph)

) ;

// Reserve space so push back i s O(1)
for (s i z e t v = 0 ; v < num vert i ces (graph) ; ++v) {

planar embedding [v] . r e s e r v e (out degree (v , graph)) ;
}

// Construct the p lanar embedding
b o y e r m y r v o l d p l a n a r i t y t e s t (

boyer myrvold params : : graph = graph ,
boyer myrvold params : : embedding = planar embedding

) ;

Figure 6.3: Example code to construct a planar embedding in the BGL.

24

template<
typename graph t ,
typename planar embedding t ,
typename co lor map t ,
typename v e r t e x i t e r a t o r t ,
typename c o l o r t

>
void poh co lo r (

const graph t & graph ,
const planar embedding t & planar embedding ,
v e r t e x i t e r a t o r t p begin , v e r t e x i t e r a t o r t p end ,
v e r t e x i t e r a t o r t q begin , v e r t e x i t e r a t o r t q end ,
c o l o r t c 0 , c o l o r t c 1 , c o l o r t c 2 ,
co lo r map t & color map

) ;

Figure 6.4: Publicly visible function prototype for Poh with Path Walking.

Type Concept Additional Requirements
graph t none must be adjacency list

color t EqualityComparable, none
CopyAssignable

planar embedding t PlanarEmbedding none
vertex iterator t InputIterator value type is vertex t

color map t LvaluePropertyMap value type is color t

Figure 6.5: Template requirements for Poh with Path Walking.

25

provided paths, Int(C). The coloring will also satisfy the output requirements of
(4.4).

The implementation follows algorithms (4.3) and (4.4) with the following imple-
mentation decisions an modifications. We use a property map to track start and stop
points in the cyclic ordering of neighbors provided by planar embedding, similar to
the neighbor range vertex property described in section 5. This allows us to do a sin-
gle iteration through the neighbors of a vertex to get an “orientation,” then remember
this orientation for the remainder of the algorithm.

Additionally, we optimize the implementation by combining the steps of (4.3) and
(4.4). Notice that the path that is colored in (4.4) is the same path we will walk
through in a subsequent call to (4.3). We may therefore perform the marking and
chord finding operations of (4.3) as the path is colored in (4.4). This reduces the
number of times we visit a particular edge by a factor of 2.

A brief code snippet in Figure 6.6 shows how to apply Poh to the graph con-
structed earlier in Figure 6.1. Source code, documentation, and complete examples
are available online [7].

Poh with BFS

We also provide an implementation of of Poh – BFS (4.2). Note that the BFS
algorithm is slower than the algorithm described in (4.3, 4.4). The function prototype
and template requirements are shown in Figure 6.8 and Figure 6.9, respectively.

We make the exact same assumptions about input structures as in our implemen-
tation of (4.3, 4.4) in the previous section.

When the algorithm is complete color map will be assigned such that it represents
a valid path 3-coloring of the subgraph bounded by the cycle formed by the two
provided paths, Int(C). The coloring will also satisfy the output requirements of
(4.2).

The implementation almost directly follows the description of (4.2), although some
decisions had to be made. In order to keep the algorithm O(n2), we must ensure
we iterate through the adjacency list of a given vertex precisely once during the
orientation phase of (4.2). This is the step where we would locate the position of vk
in Adj[v1]. To do this we note that at least one of the path endpoint vertices v1 or
vk has never been an path endpoint vertex in any call before. We then always choose
this endpoint as the vertex whose adjacency list we search through.

Source code, documentation, and complete examples are available online [7].

Augmented Embeddings

In this section we describe the AugmentedEmbedding concept used to store em-
bedding ordered augmented adjacency lists for a graph.

26

// Create a v e r t e x proper ty map to s t o r e the c o l o r i n g
vector<int> co l o r map s to rage (num vert i ces (graph)) ;
i t e ra to r proper ty map<

vector<int > : : i t e r a t o r ,
typename property map<

graph t , v e r t e x i n d e x t
> : : c ons t type

> color map (
co lo r map s to rage . begin () , get (ver tex index , graph)

) ;

// Construct the paths P and Q f o r the example graph
vector<ve r t ex t> path p = { 0 } ;
vector<ve r t ex t> path q = { 1 , 2 } ;

// Color the graph wi th Poh
poh co lo r (

graph ,
planar embedding ,
path p . begin () , path p . end () ,
path q . begin () , path q . end () ,
1 , 2 , 3 ,
color map

) ;

Figure 6.6: Example code to color a graph with Poh.

1

2 2

3 3

Figure 6.7: The coloring produced by the code in Figure 6.6.

27

template<
typename graph t ,
typename planar embedding t ,
typename v e r t e x i t e r a t o r t ,
typename c o l o r t ,
typename co lo r map t

>
void p o h c o l o r b f s (

const graph t & graph ,
const planar embedding t & planar embedding ,
v e r t e x i t e r a t o r t p begin , v e r t e x i t e r a t o r t p end ,
v e r t e x i t e r a t o r t q begin , v e r t e x i t e r a t o r t q end ,
c o l o r t c 0 , c o l o r t c 1 , c o l o r t c 2 ,
co lo r map t & color map

) ;

Figure 6.8: Publicly visible function prototype for Poh with BFS.

Type Concept Additional Requirements
graph t none must be adjacency list

color t EqualityComparable, none
CopyAssignable

planar embedding t PlanarEmbedding none
vertex iterator t InputIterator value type is vertex t

color map t LvaluePropertyMap value type is color t

Figure 6.9: Template requirements for Poh with BFS.

28

Type
embedding t a type modeling AugmentedEmbedding

node t boost::property traits<embedding t>::value type

::value type

iterator t boost::property traits<embedding t>::value type

::iterator

graph t the type of the underlying graph
vertex t boost::graph traits<graph t>::vertex descriptor

Figure 6.10: Types for the AugmentedEmbedding concept.

Object(s) Description
u,v objects of type vertex t

embedding an object of type embedding t

n an object of type node t

Figure 6.11: Notation for our discussion of augmented embeddings.

The AugmentedEmbedding concept refines LvaluePropertyMap, placing additional
restrictions on the value type of the map. The types are described in Figure 6.10.
Some objects modeling the concept are defined in figure 6.11 and valid expressions
for these objects are described in Figure 6.12.

The object embedding, see Figure 6.11, will assign a range of objects of type
node t to each vertex v in the underlying graph. There will be exactly one node in
this range for each neighbor of v in the underlying graph. We will call this range of
nodes the augmented adjacency list for v.

The type node t will represent a neighboring vertex u in the augmented adjacency
list for a vertex v. The type iterator t will be an iterator for the range of node t

objects for a vertex v.
For a vertex v each node n in the range embedding[v].begin() to embedding

[v].end() will have n.vertex be a neighboring vertex u and n.iterator be the
unique iterator in the range embedding[u].begin() to embedding[u].end() such
that n.iterator->vertex is equal to v.

We implement an algorithm to construct a data structure modeling Augmented

Embedding from a structure modeling PlanarEmbedding based on Augment Embed-
ding (3.1).

A code snippet in Figure 6.13 shows how to construct an augmented embedding
structure for the graph from Figure 6.1.

29

Expression Type Description
n.vertex vertex t vertex member for the node n

n.iterator iterator t iterator member for the node n

embedding[v].begin() iterator t beginning of the range of nodes
embedding[v].end() iterator t end of the range of nodes
embedding[v].push back(n) void append n to the range of nodes
embedding[v].clear() void clear the range of nodes

Figure 6.12: Valid expressions for an object modeling AugmentedEmbedding.

Hartman-Škrekovski in the BGL

Here we detail our implementation of the Hartman-Škrekovski algorithm described
in (5.3, 5.4). The function prototype and template requirements are shown in Figure
6.14 and Figure 6.15, respectively.

We assume that the provided graph is simple and weakly triangulated and the
given augmented embedding structure represents a valid planar embedding of the
graph. We assume that the range of vertices is a cycle in the provided plane graph,
with vertices listed in clockwise order. We finally assume that color list map assigns
each vertex in the cycle a sequence of 2 or more colors, and each vertex interior to
the cycle a sequence of 3 or more colors.

When the algorithm is complete color list map will have been modified such
that a single color remains in each list. The remaining colors will represent a valid
path coloring of the subgraph bounded by the provided cycle, Int(C).

The implementation follows algorithms (5.3) and (5.4) with the following opti-
mization. By combining the cases of (5.3) and (5.4) we may draw and remove the
path simultaneously, one vertex at a time. Therefore in the implementation we per-
form the operations of both (5.3) and (5.4) simultaneously as each vertex is colored.
This reduces the number of times we visit a particular edge by a factor of 2.

A brief code snippet in Figure 6.16 shows how to apply Hartman-Škrekovski to the
graph constructed earlier in Figure 6.1. Source code, documentation, and complete
examples are available online [7].

7 Conclusion

In this project we considered two recursive procedures on plane graphs: one com-
puting a path 3-coloring, and one computing a path list-coloring given lists of size
at least 3. We adapted each procedure to an algorithm for finding path colorings of
graphs with adjacency list representations. Additionally, we showed each procedure
admits an algorithm that runs in linear time. Finally, we provided a documented
implementation of each algorithm in C++.

30

// S t r u c t to s t o r e (v , r) p a i r s f o r augmented adjacency l i s t
struct ad jacency node t {

v e r t e x t ver tex ;
typename vector<adjacency node t > : : i t e r a t o r i t e r a t o r ;

} ;

// Create a v e c t o r to s t o r e augmented adjacency l i s t s
vector<vector<adjacency node t>> augmented embedding storage (

num vert i ces (graph)
) ;

// Map each v e r t e x to i t s augmented adjacency l i s t
i t e ra to r proper ty map<

vector<vector<adjacency node t >>:: i t e r a t o r ,
typename property map<

graph t , v e r t e x i n d e x t
> : : c ons t type

> augmented embedding (
augmented embedding storage . begin () ,
get (ver tex index , graph)

) ;

// Reserve space so push back i s O(1)
for (s i z e t v = 0 ; v < num vert i ces (graph) ; ++v) {

augmented embedding [v] . r e s e r v e (out degree (v , graph)) ;
}

// F i l l in the augmented embedding s t r u c t u r e
augment embedding (

graph , planar embedding , augmented embedding
) ;

Figure 6.13: Example code to construct an augmented embedding.

31

template<
typename graph t ,
typename augmented embedding t ,
typename c o l o r l i s t m a p t ,
typename f a c e i t e r a t o r t

>
void har tman skr ekovsk i co l o r (

const graph t & graph ,
const augmented embedding t & augmented embedding ,
f a c e i t e r a t o r t f a c e beg in , f a c e i t e r a t o r t face end ,
c o l o r l i s t m a p t & c o l o r l i s t m a p

) ;

Figure 6.14: Publicly visible function prototype for Hartman-Škrekovski.

Type Concept Additional Requirements
graph t none must be adjacency list

color t EqualityComparable, none
CopyAssignable

augmented embedding t AugmentedEmbedding none
vertex iterator t InputIterator value type is vertex t

color list t SequenceContainer value type is color t

color list map t LvaluePropertyMap value type is color list t

Figure 6.15: Template requirements for Hartman-Škrekovski.

32

// Vector l i s t i n g v e r t i c e s on the outer c y c l e
vector<ve r t ex t> c y c l e = { 0 , 1 , 2 } ;

// Create a s t r u c t u r e to s t o r e the l i s t assignment
vector< l i s t <int>> c o l o r l i s t s t o r a g e (num vert i ces (graph)) ;
i t e ra to r proper ty map<

vector< l i s t <int>>:: i t e r a t o r ,
typename property map<

graph t , v e r t e x i n d e x t
> : : c ons t type

> c o l o r l i s t m a p (
c o l o r l i s t s t o r a g e . begin () , get (ver tex index , graph)

) ;

// Assign each v e r t e x a l i s t o f the a p p r o p r i a t e s i z e
c o l o r l i s t m a p [0] = { 1 , 2 } ;
c o l o r l i s t m a p [1] = { 2 , 3 } ;
c o l o r l i s t m a p [2] = { 1 , 4 } ;
c o l o r l i s t m a p [3] = { 1 , 3 , 4 } ;
c o l o r l i s t m a p [4] = { 1 , 2 , 4 } ;

// Construct the path l i s t −c o l o r i n g
har tman skr ekovsk i co l o r (

graph , augmented embedding ,
c y c l e . begin () , c y c l e . end () ,
c o l o r l i s t m a p

) ;

Figure 6.16: Example code to color a graph with Hartman-Škrekovski.

1, 2

2, 3 1, 4

1, 3, 4 1, 2, 4

1

2 1

3 2

Figure 6.17: The coloring produced by the code in Figure 6.16.

33

Future work in this area might consider Hartman’s procedure for path 4-coloring
torus graphs, also found in [19]. The procedure first cuts and collapses a noncon-
tractible cycle in the torus graph to form a plane graph. It then divides the resulting
plane graph into several subgraphs which are individually colored with Poh’s algo-
rithm. The combined coloring is then adapted to a path 4-coloring of the original
torus graph. It would be interesting to see if this procedure can be adapted to a linear
time algorithm.

34

References

[1] Andrews, J. A. and Michael S. Jacobson, On a generalization of chromatic num-
ber, Congressus Numerantium 47 (1985), 33-48.

[2] Appel, K. and W. Haken, Every planar map is four colorable. I. Discharging,
Illinois J. Math 21 (1991), no. 3, 429-490.

[3] Appel, K., W. Haken, J. Koch, Every planar map is four colorable. II. Reducibil-
ity, Illinois J. Math 21 (1991), no. 3, 491-567.

[4] Booth, K. and C. Lueker, Testing for the consecutive ones property interval
graphs and graph planarity using PQ-tree algorithms, J. Comput. System Sci.
13 (1976), 335-379.

[5] Boyer, J. and W. Myrvold, On the cutting edge: simplified O(n) planarity by
edge addition, J. Graph Algorithms Appl. 8 (2004), 241-273.

[6] Broere, I. and C. M. Mynhardt, Generalized colorings of outerplanar and pla-
nar graphs, Graph theory with applications to algorithms and computer science
(Kalamazoo, Mich., 1984), 151-161, Wiley-Intersci. Publ., Wiley, New York,
1985.

[7] Bross, A., 2017: Path coloring algorithms for plane graphs. [available from
http://github.com/permutationlock/path coloring bgl.]

[8] Bross, A., G. G. Chappell, and C. Hartman, Path coloring algorithms for plane
graphs, in preparation.

[9] Chartrand, G., D. P. Geller, and S. Hedetniemi, A generalization of the chromatic
number, Proc. Cambridge Philos. Soc. 64 (1968), 265-271.

[10] Chartrand, G. and H. V. Kronk, The point-arboricity of planar graphs, J. Lon-
don. Math. Soc. 44 (1969), 612-616.

[11] Cowen, L., R. Cowen, and D. Woodall, Defective colorings of graphs in surfaces:
partitions into subgraphs of bounded valency, J. Graph Theory 10 (1986), 187-
195.

[12] Eaton, N. and N. Hull, Defective list colorings of planar graphs, Bull. Inst.
Combin. Appl. 25 (1999), 79-87.

[13] Erdös, P., A. Rubin, H. Taylor, Choosability in graphs, Congressus Numerantium
26 (1980), 125-157.

[14] Eswaran, K. and R. Tarjan, Augmentation problems, SIAM J. Comput. 5 (1976),
653-665.

35

[15] Goddard, W., Acyclic colorings of planar graphs, Discrete Math 91 (1991), 91-94.

[16] Hagerup, T. and C. Uhrig, Triangulating a planar graph, Library of Efficient
Datatypes and Algorithms, software package, Max Planck Institute for Informat-
ics, Saarbrücken, 1991.

[17] Hopcroft, J. and E. Tarjan, Efficient planarity testing, J. Assoc. Comput. Mach.
21 (1974), 549-568.

[18] Harary, F. and K. Jones, Conditional colorability II: bipartite variations, Pro-
ceedings of the Sundance conference on combinatorics and related topics (Sun-
dance, Utah, 1985), Congressus Numerantium 50 (1985), 205-218.

[19] Hartman, C. M., Extremal Problems in Graph Theory, Ph.D. Thesis, University
of Illinois, 1997.

[20] Lempel, A., S. Even, and I. Cederbaum, An algorithm for planarity testing of
graphs, Theory of graphs (Internat. Sympos., Rme, 1966), 215-232, Gordon and
Breach, New York; Dunod, Paris, 1967.

[21] Poh, K. S., On the linear vertex-arboricity of a planar graph, J. Graph Theory
14 (1990), 73-75.

[22] Reed, R., A new method for drawing a planar graph given the cyclic order of the
edges at each vertex, Sixteenth Manitoba conference on numerical mathematics
and computing (Winnipeg, Man., 1986), Congressus Numerantium 56 (1987),
31-44.

[23] Siek, J., L. Lee, and A. Lumsdaine, The Boost Graph Library: User Guide and
Reference Manual, Pearson Education, 2001.

[24] Škrekovski, R., List improper colourings of planar graphs, Combin. Probab. Com-
put. 8 (1999), 293-299.

[25] Thomassen, C., Every planar graph is 5-choosable, J. Combin. Theory Ser. B
62 (1994), no. 1, 180-181.

[26] Voigt, M., List colorings of planar graphs, Discrete Mathematics 120 (1993),
215-219.

[27] West, D., Introduction to Graph Theory, 2nd ed., Pearson, 2001.

36

	Plane Graphs
	A Brief History of Coloring Plane Graphs
	Graph Representations and Time Complexity
	Path Coloring and the Poh Algorithm
	The Poh Algorithm with Breadth First Search
	The Poh Algorithm in Linear Time

	Path List-Coloring and the Hartman-Škrekovski Algorithm
	The Hartman-Škrekovski Algorithm with Adjacency Lists
	Tracking Vertices on the Outer Cycle

	Path 3-Coloring and Path List-Coloring in C++
	The Boost Graph Library
	Poh's Algorithm
	Poh with BFS
	Augmented Embeddings
	Hartman-Škrekovski in the BGL

	Conclusion

